
LiDAR-Based SLAM
Chung-Pang, Wang

University of California San Diego
Department of Electrical and Computer Engineering

Abstract—In this project, we will implement simultaneous
localization and mapping (SLAM) using encoder and IMU
odometry, 2-D LiDAR scans, and RGBD measurements from
a differential-drive robot. Use the odometry and LiDAR mea-
surements to localize the robot and build a 2-D occupancy grid
map of the environment. Use the RGBD images to assign colors
to the 2-D map of the floor.

Index Terms—Point-Cloud Registration, SLAM, Factor Graph
Optimization

I. INTRODUCTION

In this project, we will implement simultaneous localization
and mapping (SLAM) using encoder and IMU odometry
to construct motion model for a differential-drive robot and
improve the robot trajectory by implementing LiDAR scan
matching using iterative Closest Point algorithm to optimize
the trajectory with both motion model and observation model.
With a better trajectory, we can build a occupancy grid map of
the environment that specify where the robot have navigated
(scanned) before with 2D bresenham ray tracing algorithm.
Furthermore, we will build a texture map that stitches the
images obtained from RGBD measurements, showing what
the environment of robot traversed looks like. Finally, We will
enhance the accuracy of the robot trajectory estimation through
pose graph optimization with fixed-interval loop closure con-
straints, constructing nodes with IMU odometry, edges with
scan matching and loop constraints with scan matching using
Georgia Tech Smoothing and Mapping library (GTSAM).

II. PROBLEM FORMULATION

A. Encoder and IMU Odometry

In the first part of the project, our goal is to construct the
motion model of a differential-drive robot. With IMU angular
velocity ωt measurements and Encoders counts z ticks, we
can derive linear velocity vt at time t of the robot and plug
in vt into motion model to obtain the trajectory of the robot.
Obtained discrete-time differential-drive kinematic model of
the robot by utilizing Euler discretization over time interval
τt, we have :

xt+1 =

xt+1

yt+1

θt

 = xt + τt

vtcos(θt)vtsin(θt)
ωt

 (1)

Where ωt is the yaw rate obtained from IMU, θt is the
orientation of the robot obtained from last robot state xt. After
computing robot states for all time steps x0:t with motion
model, we have the whole robot trajectory.

B. Point-cloud registration via iterative closest point (ICP)

The robot trajectory we have now constructed exclusively
from motion model, which can be very inaccurate. Therefore,
we also need observation model to improve the accuracy of the
trajectory, meaning that we can utilize what robot observe to
correct the trajectory. With 2D LiDAR scans, we can perform a
point-cloud registration using iterative closest point algorithm
(ICP).

1) Point-cloud Registration: Given two sets of points{
mi

}
and

{
zi
}

in R3, find the transformation p ∈ R3, R ∈
SO(3) and data associtation ∆ that align them. However,
in most SLAM problem and in this project, we only have
the ranges values of the LiDAR data but not the associations
between scans.

2) Iterative Closest Point Algorithm: Find the transforma-
tion p, R between sets

{
mi

}
and

{
zi
}

of points with unknown
data association ∆. Iterates between finding associations ∆
based on closest points and applying the Kabsch algorithm
to determine p, R. ICP first initialize with p0, R0 and find
correspondences (i, j) ∈ ∆ based on closest points:

i ↔ argmin
j

∥mi − (Rkzj + pk)∥22 (2)

where pk and Rk are obtained from updated pose. After getting
the data association, we can solve the point cloud registration
problem with Kabsch algorithm.

3) Kabsch Algorithm: A Known data association point
cloud registration problem can be formulated as the following.
Find the transformation p ∈ R3, R ∈ SO(3) between{
mi

}
and

{
zi
}

with known association.

min
R∈SO(3),p∈R3

f(R,p) :=
∑
i

wi ∥(Rzi + p)−mi∥22 (3)

(3) can be rewritten as

max
R∈SO(3)

tr
(
Q⊤R

)
(4)

where Q =
∑

i δmiδz
⊤
i . This equation is known as Wahba’s

problem and can be solved by Kabsch algorithm. From Kabsch
Algorithm, the optimal rotation R∗ can be written as:

R∗ = UAV T (5)

where U and V are obtained from Sigular Value Decom-
position of Q (Q = UΣV T ), and A is a matrix to avoid
reflections. Now we have the optimal rotation R, we can then
update the translation apply to the point cloud and associate
data and apply Kabsch iteratively to get the final optimal



transformation T . We can further improve the robot trajectory
by using scan matching with ICP algorithm.

C. Occupancy and texture mapping

We can construct an occupancy map with robot states
(x0:t, y0:t, θ0:t) and LiDAR scans for all time steps and further
construct a texture map with robot states and RGBD measure-
ments from Kinect depth camera. For building a occupancy
map, we first need to transform the LiDAR scans from LiDAR
frame to robot body frame and transform scans to world frame
based on the state of the robot. Then, transform the unit of the
coordinates from meters to grids and apply 2D bresenham ray
tracing algorithm to detect free grids and occupied grids. Add
log odds to occupied grids and subtract log odds to free grids.
Finally apply Sigmoid function to the whole map to convert the
map into probabilistic map. For building texture map, we also
need to transform images from camera frame top robot body
frame. However, before that we need to transform RGB color
values and pixels coordinate to optical frame, and transform
optical frame to regular camera frame. With the pixels in
camera frame, we can now transform it into robot body frame
and then world frame using robot states (x0:t, y0:t, θ0:t). Filter
out the pixels positions that does not represent floor by using
the z (height) obtained from the pixels coordinates in the world
frame. Finally, insert the image RGB color values to the map
at image’s pixels positions in the world frame to get a texture
map.

D. Pose Graph Optimization and Loop Closure

With IMU odometry obtained from motion model and the
improved trajectory from scan matching by combining the
information from motion model and observation model, we
can construct a factor graph with close loop constraints to
perform a poseSLAM method to construct more accurate
trajectory. Adding close loop constraints enable the robot to
know which area that the robot had seen before and there-
fore be able to utilize more information than scan matching
and IMU odometry. I use the poses of IMU odometry Tt

to construct nodes and the relative pose of scan matching
tTt+1 = TtT

−1
t+1 and use fix-interval loop closure method with

scan matching poses tTt+interval = TtT
−1
t+interval to construct

loop constraint. Finally apply Levenberg-Marquardt optimizer
to optimize the trajectory.

III. METHODS

A. Data Synchronization

Since the data for all sensors does not synchronized, we
need to implement data synchronization to match the time
stamps of different sensors. I use unsupervised k nearest
neighbors learning algorithm to perform data synchronization.
I use the data that has more time stamps to construct nearest
neighbors with k = 1 and use the data that has less time
stamps to find the closest time stamps in euclidean distance.
Utilize the indices of the closest time stamps of the data that
has more time stamps to synchronize two data.

KNN = NearestNeighbors(more time stamps) (6)

indices = KNN(less time stamps) (7)

Synchronized = more time stamps(indices) (8)

B. Motion Model and Pose Estimation

Given encoder counts [FR,FL,RR,RL] corresponding to
the front-right, front-left, rear-right, and rear-left wheels and
the wheel travels 0.0022 meters per tic. We can compute linear
velocity vt of the robot:

Vleft =
(FL+RL)

2
∗ time interval

Vright =
(FR+RR)

2
∗ time interval

vt =
Vleft + Vright

2

(9)

where time interval is obtained by time interval =
time stamps1:t − time stamps0:t−1. With linear velocity
vt of the robot at time t and yaw rate obtained from IMU,
we can obtain robot trajectory by plugging linear velocity vt
into motion model (1). After obtaining the robot states xt+1, I
constructed homogeneous pose matrix Pt at time t to represent
the robot state in the world frame at time t:

Pt =

[
Rt pt
0 1

]
(10)

where Rt is a rotation matrix of the robot orientation θt at
time t and Pt is the position of the robot (xt, yt, 0)at time t.
Since the robot is a ground robot, z position and the angle
except for yaw angle are 0.

C. Iterative Closest Point (ICP) Algorithm

To ensure the implementation of the ICP algorithm is
correct, I test ICP on two different 3D point cloud objects
- drill and liquid container with 4 partial point cloud and
different poses. Since ICP algorithm is very sensitive to initial
guess and initial translation can be easily obtained from the
centroids of two point cloud:

p0 = m̄− z̄ (11)

where m̄ is the centroid of target point cloud and z̄ is centroid
of source point cloud. We need to choose initial rotation
properly. I limit the initial rotation to be yaw angles only based
on the fact that we know the 3D point cloud model was placed
on the ground. Therefore, I try 6 different yaw angles through
out 360 deg:

Θi =
2π

6
i, i = 1, ..., 6 (12)

Then construct the yaw angle in rotation matrix to apply onto
point cloud. As mentioned above, the first step of ICP is data
association which is associate two point clouds. I use KNN



to associate point clouds, similar to data synchronization, I
use the point cloud that has more points which is the source
point cloud to build/initialize the Nearest Neighbor and use
target point cloud to find the closest points in source point
cloud. With know data association, we can solve the point
cloud registration problem with Kabsch algorithm in (5). We
first need to find Q =

∑
i δmiδz

⊤
i where δmi = mi − m̄

and δzi = zi − z̄. With Q, we can apply Singular Value
Decomposition and get the optimal rotation R∗

i from (5) at
iteration i. Then we can update translation p = m̄ − Rz̄. To
get the final transformation T , we need to accumulate all of the
rotation and translation, final transformation T can be written
as:

Tt =

[
Rn...R0 Rn(Rn−1pt−1 + pt)

0 1

]
(13)

Finally, we apply final transformation T on source point cloud
to make source point cloud as close as target point cloud as
possible.

D. Lidar Scan Matching

With ICP algorithm from previous section, we can imple-
ment LiDAR scan matching, combining both the infomation
from motion model and observation model to refine the overall
trajectory estimation. We first need to convert LiDAR ranges
data into the points in x,y coordinates.

x = range ∗ cos(θi)
y = range ∗ sin(θi)

(14)

Since the liDAR scan from -135 degrees to +135 degrees,
θ ranges from -135 to +135 with the number of LiDAR scans.
Then, we transform the LiDAR Scans from LiDAR frame
to robot body frame by subtracting by the distance between
LiDAR sensor and robot center. Now, we can use the relative
pose of IMU odometry tPt+1 = PtP

−1
t+1 to get a good initial

guess R0 and p0 extract from tPt+1. We can now obtain the
poses of every time step by updating current poses using ICP:

P ′
t+1 = PttTt+1

P ′
t+2 = P ′

t+1t+1Tt+2

(15)

Overtime, we will get the whole new refined trajectory.

E. Mapping

1) Occupancy Grid Mapping: With robot trajectory and
LiDAR scans, we can build a occupancy grid map that shows
where the robot had ”seen” before. We first need to transform
the LiDAR scans from LiDAR frame to robot body frame as
the way we did in scan matching. Then, transform scans to
world frame based on the state of the robot:

lidar scansw = Pt · lidar scanslidar (16)

Then, we need to transform the unit of the coordinates from
meters to grids:

xgrid = x−MAPxmin

ygrid = x−MAPymin

(17)

Now we can apply 2D bresenham ray to compute from a
starting points (sx,sy) to a end points (ex,ey), where did a
ray pass through from starting point to end point. since the
input starting points are in grids, the output of 2D bresenham
algorithm will also in grids. tracing algorithm to detect free
grids and occupied grids. Add log odds to the location of
occupied grids in the map and subtract log odds to location
of free grids in the map.{

free grids : −log(2)
occupied grids : +log(4)

(18)

Finally apply sigmoid function to make it a probabilistic
map.

sigmoid =
1

1 + e−x
(19)

2) Texture Mapping: Similar to Occupancy Grid Mapping,
we first need to transform RGB color values and pixels coor-
dinate from image coordinate to optical frame with intrinsic
matrix K, and transform optical frame to regular camera
frame. With the pixels in camera frame, we can now transform
it into robot body frame with robot poses:

camera imagesw = Pt · camera imagesbody (20)

We now have pixels coordinates in the world frame
(xw, yw, zw). Since we are stitching floor texture to the texture
map, I set the z axis pixels coordinates zw < 0.2(m). Finally,
we get the texture map that show the environment of where
robot had navigated.

K =

 fsu fsθ cu
0 fsv cv
0 0 1

 =

 585.05 0 242.94
0 585.05 315.84
0 0 1


(21)

F. Factor Graph SLAM

With IMU odometry obtained from motion model and the
improved trajectory from scan matching by combining the
information from motion model and observation model, we
can construct a factor graph with close loop constraints to
perform a poseSLAM method to construct more accurate
trajectory. Adding close loop constraints enable the robot to
know which area that the robot had seen before and there-
fore be able to utilize more information than scan matching
and IMU odometry. I use the poses of IMU odometry Tt

to construct nodes and the relative pose of scan matching
tTt+1 = TtT

−1
t+1 and use fix-interval loop closure method with

scan matching poses tTt+interval = TtT
−1
t+interval to construct

loop constraint. Finally apply Levenberg-Marquardt optimizer
to optimize the trajectory. (All factor graph optimization are
implement with GTSAM) Levenberg-Marquardt optimizer:

∑
ij

J⊤
ijW

⊤
ijWijJij + λD

 δx(k) = −
∑
ij

J⊤
ijW

⊤
ij e

(
x
(k)
i ,x

(k)
j

)
(22)



IV. RESULTS

A. IMU Odometry

The results showed that the goal of the experiment should
be making the starting point and the end point of the trajectory
aligned.

Fig. 1. IMU Odometry Trajectory

B. Point-cloud Registration via ICP

Since ICP is very sensitive to initial guess, some of the point
cloud are not aligned. I think it can only be fixed by adjusting
initial guess manually.

Fig. 2. ICP for 4 different drill poses

Fig. 3. ICP for 4 different drill poses

C. Lidar Scan Matching

We can see from Fig.4 that scan matching is a little bit
off from the IMU odometry, meaning that scan matching
algorithm did correct the IMU trajectory but we will further
see that scan matching algorithm is not the best result we can
get.

Fig. 4. ICP for 4 different drill poses



D. Texture Mapping and Occupancy Grid Mapping

Texture Mapping and Occupancy Grid Mapping give us a
good sense of the environment of what robot had been. It
also shows the trajectory optimized with GTSAM has the best
results.

Fig. 5. Occupancy Grid Map

Fig. 6. Texture Map

E. Factor Graph Optimization

Since we do not have the ground truth of the robot trajectory,
we can not build a good factor graph with proper covariance
of odometry model and for loop closure model. In theroy,
the trajectory from scan matching should be better than imu
odometry but we can tell from the result that this is not the
case. I believed the reason is that our ICP has large error in
it to make the trajectory inaccurate.

Fig. 7. GTSAM Optimized Trajectory with no loop



Fig. 8. GTSAM Optimized Trajectory with loop

REFERENCES

[1] UCSD ECE276A slides on motion models and observation
models https://natanaso.github.io/ece276a/ref/ECE276A 4
MotionAndObservationModels.pdf

[2] UCSD ECE276A slides on locoalization Modelshttps://natanaso.github.
io/ece276a/ref/ECE276A 6 LocalizationOdometry.pdf

[3] UCSD ECE276A slides on Factor Graph SLAM Modelshttps://natanaso.
github.io/ece276a/ref/ECE276A 5 FactorGraphSLAM.pdf

[4] astropy library https://docs.astropy.org/en/stable/api/astropy.coordinates.
spherical to cartesian.html

[5] Jax library https://jax.readthedocs.io/en/latest/


