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Abstract—The goal of this project is to implement visual-
inertial simultaneous localization and mapping (SLAM) using an
extended Kalman filter (EKF). With synchronized measurements
from an inertial measurement unit (IMU) and a stereo camera
as well as the intrinsic camera calibration and the extrinsic cal-
ibration between the two sensors, specifying the transformation
from the left camera frame to the IMU frame.

Index Terms—Extended Kalman Filter, Visual-inertial SLAM

I. INTRODUCTION

In this project, we will first implement an Extended Kalman
Filter (EKF) prediction step based on the SE(3) kinematics
equations and the linear and angular velocity measurements
from the IMU to estimate the pose Tt ∈ SE(3) of the IMU
over time t. Then, we will implement Landmark mapping via
EKF update step based on stereo-camera observation model
with visual feature observations. Finally, we will combine
the IMU prediction step with the landmark update step and
implement an EKF update step for the IMU pose Tt ∈ SE(3),
based on the stereo-camera observation model, to obtain a
complete visual-inertial SLAM algorithm.

II. PROBLEM FORMULATION

A. Datasets Overview

The goal of this project is to implement visual-inertial
simultaneous localization and mapping (SLAM) using an ex-
tended Kalman filter (EKF). We have synchronized measure-
ments from an inertial measurement unit (IMU) and a stereo
camera as well as the intrinsic camera calibration and the
extrinsic calibration between the two sensors, specifying the
transformation from the left camera frame to the IMU frame.
For IMU measurements, we have linear velocity vt ∈ R3

and angular velocity ωt ∈ R3 of the body with coordinates
expressed in the body frame of the IMU. For Visual feature
measurements, we have pixel coordinates zt ∈ R4×M of
detected visual features from M point landmarks with pre-
computed correspondences between the left and the right
camera frames. For our camera model we have Intrinsic
calibration matrix with stereo baseline b in meters, camera
calibration matrix:

Ks =


fsu 0 cu 0
0 fsv cb 0

fsu 0 cu −fsub
0 fsv cv 0

 (1)

We also have Extrinsic matrix for Extrinsic calibration: trans-
formation ITC ∈ SE(3) from the left camera to the IMU

frame.Furthermore, the IMU sensor is placed upside down on
the vehicle so the IMU frame is oriented as x = forward, y =
right, z = down. When estimating the IMU trajectory, you
can leave the IMU frame orientation as is or rotate around the
x-axis to obtain a regular coordinate frame.

B. Extended Kalman Filter

In the first part, we are only implementing EKF prediction
step to obtain the whole trajectory and also not predicting the
covariance of the robot poses since we only need the poses
to construct IMU odometry. We have not formulate a way to
perform EKF update step to implement landmarks mapping.
First, we need to construct EKF in a more general way. Motion
model for the continuous-time IMU pose T (t) with noise w(t)

Ṫ = T (ζ̂ + ŵ) ζ(t) :=

[
v(t)
ω(t)

]
∈ R6 (2)

To consider a Gaussian distribution over T , express it as a
nominal pose µ ∈ SE(3) with small perturbation δ̂µ ∈ se(3)

T = µ exp(δ̂µ) ≈ µ(I + δ̂µ)

Substitute the nominal and perturbed pose in the kinematic
equations:

µ̇(I + δ̂µ) + µ(δ̂µ) = µ(I + δ̂µ)(û+ ŵ),

µ̇+ µ̇δ̂µ+ µ(δ̂µ) = µû+ µŵ + µµ̂û+ µµ̂ŵ,

µ̇ = µû, µûµ̂+ µ(δ̂µ) = µŵ + µµ̂û,

µ̇ = µû, δ̂µ = δ̂û− ûµ̂+ ŵ = (−ûδµ)∧ + ŵ

(3)

Using T = µ exp(µ̂) ≈ µ(I + δ̂µ), the pose kinematics
Ṫ = T (û + ŵ) can be split into nominal and perturbation
kinematics:

nominal : µ̇ = µû

perturbation : δ̇µ = −ûδµ+w

û : =

[
ω̂ v̂
0 ω̂

]
∈ R6×6

(4)

In discrete-time with discretization τt, the above becomes:

nominal : µt+1 = µt exp (τtût)

perturbation : δµt+1 = exp (−τtût) δµt +wt



Motion model can be written as nominal kinematics of µt|t
and perturbation kinematics of δµt|t with time discretization
τt :

µt+1|t = µt|t exp (τtût)

δµt+1|t = exp (−τtût) δµt|t +wt

(5)

EKF prediction step with wt ∼ N (0,W ) :

µt+1|t = µt|t exp (τtût)

Σt+1|t = exp (−τ ût) Σt|t exp (−τ ût)
⊤
+W

(6)

where

ut =

[
vt

ωt

]
∈ R6 ût =

[
ω̂t vt

0⊤ 0

]
∈ R4×4

ût =

[
ω̂t v̂t

0 ω̂t

]
∈ R6×6

We have EKF prediction step for both mean and covariance.
Now we need to further construct the formulations for EKF
update steps. Observation model with measurement noise
vt,i ∼ N (0, V ) :

zt,i = h (Tt,mj) + vt,i := Ksπ
(
oTIT

−1
t mj

)
+ vt,i (7)

Homogeneous coordinates for m: mj :=

[
mj

1

]
Projection function and its derivative:

π(q) := 1
q3
q ∈ R4 dπ

dq (q) =
1
q3


1 0 − q1

q3
0

0 1 − q2
q3

0

0 0 0 0
0 0 − q4

q3
1

 ∈ R4×4

All observations, stacked as a 4Nt vector, at time t
with notation abuse:

zt = Ksπ
(
oTIT

−1
t m

)
+ vt vt ∼ N (0, I ⊗ V ) (8)

where

I ⊗ V :=

 V
. . .

V


Prior of the mapping : m | z0:t ∼ N (µt,Σt) with µt ∈
R3M and Σt ∈ R3M×3M . We have stereo calibration matrix
Ks, extrinsics oTimu ∈ SE(3), IMU pose Tt+1 ∈ SE(3),
new observation zt+1 ∈ R4Nt+1 . We can predict observation
based on µt and known correspondences ∆t+1 :

z̃t+1,i = Ksπ
(
oTIT

−1
t+1µt,j

)
∈ R4 for i = 1, . . . , Nt+1

(9)

Jacobian of z̃t+1,i with respect to mj evaluated at µt,j :

Ht+1,i,j =

{
Ks

dπ
dq

(
oTIT

−1
t+1µt,j

)
oTIT

−1
t+1P

⊤, if ∆t(j) = i,

0, otherwise
(10)

EKF update:

Kt+1 = ΣtH
⊤
t+1

(
Ht+1ΣtH

⊤
t+1 + I ⊗ V

)−1

µt+1 = µt +Kt+1 (zt+1 − z̃t+1)

Σt+1 = (I −Kt+1Ht+1) Σt

(11)

Now, we have all of the formulation of EKF prediction and
updates for both Localization and Landmarks Mapping.

C. IMU localization via EKF prediction

With the linear velocity of robot position and angular
velocity of robot orientation provided from the IMU sensor
data:

vt =

vx(t)vy(t)
vz(t)

ωt =

ωx(t)
ωy(t)
ωz(t)

 (12)

we can utilize discrete-time pose kinematics to obtain robot
pose in world frame at time t wTt ∈ SE3. We first have
generalized velocity ζt = [v(t), ω(t)]T ∈ R6, then discrete-
time pose kinematics:

Tt+1 = Ttexp(τtζ̂t) (13)

where ζ̂t is the hat mat of generalized velocity, twist matrix:

ζ̂t =

(
vt
ωt

)
=

[
ω̂t vt
0 0

]
(14)

With equation (11), we can obtain robot poses for every time
step t and further construct the whole trajectory of the robot.

D. Landmark mapping via EKF update

We obtained the robot odometry from previous localization.
Now we are assume that the poses of the robot x are known.
The environment is represented by M static landmarks, and
each of them is characterized by its location in the space
denoted as mi, i = 1, . . . ,K. These landmarks are considered
as points in the 3D space and can be specified by three
numerical values where mi ∈ R3 and m ∈ R3×M . In each
EFK update step, we will first generate an initial guess of the
landmarks location with known poses, then update µt+1 with
equation(9), we will explain the details of the process in the
following sections. The robot can sense the landmarks at each
time step t, where the observation is denoted as zt. Since the
robot can sense more than one landmarks at a single time
step, zt is a general notation for composed observation from
multiple landmarks.

The goal of the mapping problem is then to estimate the
locations of landmarks based on the pose of robot x and the
observation zt. In each EFK update step, we will first generate
an initial guess of the landmarks location with known poses,
then update µt+1 with equation(9), we will explain the details
of the process in the following sections.



E. Visual-inertial SLAM

To obtain a better map and odometry, we need to esti-
mate the position of landmarks and the pose of the robot
simultaneously, the idea is to merge the predict and update
steps of Extended Kalman Filter based visual mapping and
visual-inertial odometry. Therefore, instead of implementing
EKF prediction and update separately, we need to fist predict
the pose and the positions of the landmarks (initial guess)
and their corresponding covariance then update the poses and
the landmarks and their covariance. However, since the EKF
update step formulation we derived previously are based on
landmarks mj ∈ R3, the update step formulation for poses
T ∈ SE(3) needed to be reformulated. We will discuss more
in the next section.

III. METHODS

A. 3D Stereo-Camera Model

Since the feature data are in pixels coordinate observed by
the left camera and right camera, we need to utilize stereo
camera model to covert it into world coordinate to obtain
the position of the landmarks in world frame. Consider stereo
camera model: uL

vL
d

 =

 fsu 0 cu 0
0 fsv cv 0
0 0 0 fsub

 1

z


x
y
z
1

 (15)

where d = uL − uR = 1
z fsub Since stereo intrinsic matrix

is not invertible, we cannot directly take the inverse of Ks to
obtain x and y, instead, we derive the solution of x and y:

x = (uL − cx) z/fx

y = (vL − cy) z/fy
(16)

where z = fsub
d

B. EKF update for SE(3) Poses

Let the elements of Ht+1 ∈ R4Nt+1×6 corresponding to
different observations i be Ht+1,i ∈ R4×6 The first-order
Taylor series approximation of observation i at time t + 1
using an IMU pose perturbation δµ is:

zt+1,i = Ksπ

(
oTI

(
µt+1|t exp(δ̂µ)

)−1

mj

)
+ vt+1,i

≈ Ksπ
(
oTI(I − µ̂)µ−1

t+1|tmj

)
+ vt+1,i

= Ksπ

(
oTIµ

−1
t+1|tmj − oTI

(
µ−1

t+1|tmj

)⊙
δµ

)
+ vt+1,i

≈ Ksπ
(
oTIµ

−1
t+1|tmj

)
︸ ︷︷ ︸

z̃t+1,i

−Ks
dπ

dq

(
oTIµ

−1
t+1|tmj

)
oTI

(
µ−1

t+1|tmj

)⊙

︸ ︷︷ ︸
Ht+1,i

δµ+ vt+1,i

(17)

Where homogeneous coordinates s ∈ R4 and ξ̂ ∈ se(3):

ξ̂ = s⊙ξ

[
s
1

]⊙
:=

[
l −ŝ
0 0

]
∈ R4×6

Predicted observation based on µt+1|t and known correspon-
dences ∆t :

z̃t+1,i := Ksπ
(
oTlµ

−1
t+1|tmj

)
for i = 1, . . . , Nt+1 (18)

Jacobian of z̃t+1,i with respect to Tt+1 evaluated at µt+1|t

Ht+1,i = −Ks
dπ

dq

(
oTIµ

−1
t+1|tmj

)
oTI

(
µ−1

t+1|tmj

)⊙
∈ R4×6

(19)

EKF update step:

Kt+1 = Σt+1|tH
⊤
t+1

(
Ht+1Σt+1|tH

⊤
t+1 + I ⊗ V

)−1

µt+1|t+1 = µt+1|t exp
(
(Kt+1 (zt+1 − z̃t+1))

∧)
Σt+1|t+1 = (I −Kt+1Ht+1) Σt+1|t

(20)

Where

Ht+1 =

 Ht+1,1

...
Ht+1,Nt+1


C. IMU localization via EKF prediction

As mentioned previously, we only implement EKF pre-
diction for IMU localization to obtain the trajectory. For
implementation, I used equation (4) to compute all of the
predicted poses in the world frame and also the predicted
covariance overtime.

D. Landmark mapping via EKF update

With equation (13) and (14), we can obtain landmarks
positions in camera frame. Then, we transform it into predicted
observation in world frame with (7). With the predicted
observation (initial guess), we can update landmark positions
in each update step with (9).

E. Visual-inertial SLAM

In Visual-inertial SLAM, we are merging the predict and
update steps of Extended Kalman Filter based visual mapping
and visual-inertial odometry. For implementation, the setting
of the noises and covariance are very important since the
SLAM algorithm is very sensitive to the noise setting. Based
on the fact that we know our motion will be more accurate than
the landmarks prediction and updates, I set motion noise and
pose prior to be relatively small around 0.1 and set landmark
covariance and measurements noise to be 15 pixels.

IV. RESULTS

A. IMU localization via EKF prediction

Our algorithm is tested with 2 data set, and all of them are
collected in real driving scenarios. After verifying the path
visually through the provided video, the results of the IMU
odometry seem to be consistent with motion of the car in the
video as shown in Fig.1.



Fig. 1. IMU localization via EKF prediction

B. Landmark mapping via EKF update

Landmark mapping plays a crucial role in ensuring the
accuracy of the overall SLAM framework. The initial guess for
landmark mapping is shown in Fig. 2. From this visualization,
we can observe that the landmarks are distributed consistently
along both sides of the vehicle’s trajectory, which aligns
well with the expected pattern for a car driving in an urban
environment. This initial guess serves as a foundation for
refining the landmark positions through subsequent updates.

Using the Extended Kalman Filter (EKF) update step, the
landmark estimates are progressively refined as new obser-
vations are integrated. The EKF update incorporates both
the measurement noise and the covariance associated with
the landmarks, enabling the system to balance between the
observed data and prior estimates. As shown in Fig. 3, the
updated landmarks demonstrate a more uniform and even
distribution compared to the initial guess, effectively capturing
the vehicle’s odometry and the surrounding environment.

A key improvement observed after the EKF update is
the reduction in the uncertainty associated with landmark
positions. By leveraging the sensor data and the vehicle’s
estimated pose, the EKF update minimizes discrepancies in the
landmark estimates, ensuring better consistency and alignment
with the actual environment. This is particularly beneficial
in dynamic or noisy environments, where raw measurements
alone may not be reliable.

Furthermore, the EKF update step highlights the adaptability
of the SLAM framework. For instance, landmarks that were
initially misaligned or sparsely placed become more evenly
distributed after several update cycles. This process demon-
strates the robustness of the EKF in handling variations in
sensor noise and environmental conditions.

C. Visual-inertial SLAM

As shown in Fig. 4, the trajectory produced by the SLAM
algorithm appears significantly different from the localization-
only trajectory. This difference is expected, as SLAM in-
corporates additional information from observed landmarks

to correct errors in localization. The scale of the map is
represented in meters, and the results highlight a substantial
deviation of up to 100 meters at the trajectory’s endpoint.
Such deviations, while large in real-world scenarios, reflect
the challenges of accurately fusing visual and inertial data in
the absence of ground truth.

One of the key challenges in implementing visual-inertial
SLAM lies in tuning the covariance and noise parameters. The
algorithm’s sensitivity to these parameters makes it difficult
to achieve an optimal balance between over-trusting sensor
data (leading to noisy maps) and over-smoothing (resulting in
overly simplistic trajectories). Without access to ground truth
data, parameter tuning often involves iterative adjustments and
visual verification to ensure the trajectory aligns with observed
motion in video recordings.

Despite these challenges, the SLAM-generated trajectory
demonstrates improvements in capturing fine-grained details of
the environment compared to localization alone. For instance,
the integration of visual feature observations helps correct drift
in odometry, resulting in a trajectory that better reflects the
robot’s actual path. However, achieving a precise trajectory
remains an open challenge, particularly in environments with
high sensor noise or dynamic obstacles.

This sensitivity underscores the importance of robust noise
models and accurate sensor calibration. Future improvements
could involve adaptive noise tuning techniques or the in-
corporation of ground truth data during testing to refine
parameter settings. Additionally, integrating advanced filtering
techniques, such as smoothing-based SLAM, could further
enhance trajectory accuracy and mapping reliability.
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