
Orientation Tracking
Chung-Pang, Wang

University of California San Diego
Department of Electrical and Computer Engineering

Abstract—In this project, we aim to leverage IMU data for
tracking object orientation. Despite providing a rough estimate,
IMU data may deviate from true orientation due to noise
and bias. We introduce a gradient descent algorithm (GD) to
accurately track the 3-D orientation of a rotating body using IMU
measurements. Our approach ensures that consecutive orienta-
tions align with IMU angular velocity and gravity acceleration.
Subsequently, we utilize the optimal orientation to construct
panoramic images by stitching images over time.

Index Terms—Optimization, Quaternions

I. INTRODUCTION

In this project, we’re trying to utilize the data obtained
from IMU to track the orientation of the object. We can
obtain a rough orientation from the IMU data. However, the
orientation might be deviate from the true orientation due
to the noise and bias of the IMU data. In this project, we
introduce gradient descent algorithm (GD) to track the 3-
D orientation of a rotating body using measurements from
an inertial measurement unit. In short, we are using GD to
estimate orientation based on the fact every two consecutive
orientations should agree with angular velocity from IMU
and the fact that purely rotating body should also agree with
gravity acceleration. After obtaining optimal orientation, we
utilize the orientation to construct a panoramic image by
stitching the images over time.

II. PROBLEM FORMULATION

A. Orientation Tracking

In the first part of the project, our goal is to estimate the
orientation of the body over time using the IMU angular
velocity ωt and linear acceleration at measurements. We will
use quaternion qt to represent the body-frame orientation at
time t since quaternion is an orientation representation that
has no singularity(e.g. Gimbal Lock in Euler Angle Repre-
sentation). Using the IMU angular velocity measurements ωt

and the differences between consecutive time stamps τt, we
can predict the quaternion at the next step qt+1 using the
quaternion kinematics. From the trajectory R(t) of continuous
rotation model, we have:

RTR = I ⇒ ṘTR+RT Ṙ = 0 (1)

Since RT Ṙ is skew-symmetric:

RṘTR+RRT Ṙ = 0 ⇒ −Rω̂ + Ṙ = 0 (2)

We have continuous rotation kinematics:

Ṙ = Rω̂ (3)

For this project, we have Discrete-time Motion Model:

qt+1 = f(qt, τtωt) := qt ◦ exp([0, τtωt/2]) (4)

In this project, the body is undergoing pure rotation. There-
fore,the acceleration of the body should be approximately
[0, 0,−g] in the world frame of reference, where g is
−9.81m/s2 the gravity acceleration. Hence, the measured
acceleration at in the IMU frame should agree with gravity
acceleration after it is transformed to the IMU frame using the
orientation qt, we can then construct the observation model by
transforming gravity vector from world fram into body frame
(IMU frame):

at = h(qt) := q−1
t ◦ [0, 0, 0,−g] ◦ qt (5)

With the motion model (1) and observation model (2), we can
now construct an objective function to formulate orientation
tracking problem as a optimization problem for all orientation
over time q1:T := q1, q2, ..., qT . The cost function of the
orientation tracking optimization problem:

c (q1:T ) :=
1

2

T−1∑
t=0

∥2 log(q−1
t+1 ◦ f(qt, τtωt))∥22

+
1

2

T∑
t=1

∥at − h (qt)∥22

(6)

The first term measures the error between the estimated
orientation from optimization updates and the motion model
prediction, q−1

t+1◦f (qt, τtωt) indicates the difference in quater-
nion representation, if those two quaternion are the same, that
operation will give us identity quaternion. Besides, the log
function map quaternion to axis angle representation, then
the error in axis angles can be compute by norm directly.
The Second term measures the error between the world frame
gravity vector transformed back to IMU frame and the readings
from the accelerometer on the IMU. Since the quaternion can
represent orientation correctly only when the quaternion is a
unit quaternion. Therefore, we need to implement projected
gradient decent algorithm to minimize the cost function.

B. Panorama

With the optimized quaternions, we can now construct a
panoramic image by stitching the RGB images over time based
on the body orientation q1:T . We first need to convert the image
coordinate to a spherical coordinate to match the orientation
representation of a quaternion which is a vector at the center
of a sphere (half sphere) pointing at the surface of the sphere.



Once we project the images on the sphere, we can inscribe the
sphere in a cylinder to project images on it and finally unwrap
the cylinder surface to a large rectangular image.

III. METHODS

A. Projected Gradient Decent

With (6) and calibrated data, we can now implement PGD
to optimized our estimated quaternions. We first have regular
GD:

q̃1:T = q1:T − α∇q1:T c (q1:T ) (7)

where q1:T are the previous/initial quaternions, α is the step
size and ∇q1:T c (q1:T ) is the gradient of the cost function. In
my approach, I projected the updated quaternion back to unit
quaternion by simply normalizing q̃1:T , forcing the updated
quaternion to be unit quaternions, ensures valid orientation
representation of quaternions.

B. Panorama

For the construction of Panorama, we first need to transform
the image coordinates (u, v) to spherical coordinates (λ, ϕ, 1)
to project image onto the sphere. To find the longitude and
latitude of the each pixel, we need to consider horizontal and
vertical field of view (FOV), setting horizontal FOV 60◦ and
vertical FOV 45◦. Therefore, the angle that a single pixel
have in vertical and horizontal will be 45

240 , 60
320 respectively

(since the image have 320 pixels vertically and 240 pixels
horizontally). Besides, since the origin of the image coordinate
are at the top left. Thus, setting the center of be the origin
will make originally origin (−159,−119). With the spherical
coordinates, we can convert it to Cartesian coordinates, en-
abling us to apply rotation to images. Then, we can project
the coordinates on a cylinder and unwrap it to a rectangle
image with width 2π and height π radians. Rotated Cartesian
coordinate to Cylinder then unwrapped image coordinate can
be written as:

u = (arctan
ycart
xcart

− π)
1919

2π
(8)

v = (
2

π
− zcart)

959

π
(9)

Where (u, v) are the index of the large canvas where the
image stitched at. The pixel intensity of the large canvas are
initially zero and the size of the canvas is 1920x960 to match
the FOV (e.g. 60

320 = 360
1920 ). The first term of (10) represent

arc length of the cylinder(setting radius = 1), then transform
to image coordinate by subtracting half circumference of the
cylinder. Finally, convert the degree per pixel of each pixel to
pixel coordinate (index) of the large canvas and updating the
intensity value at each pixel index to get a panoramic image.

C. Data

1) IMU calibration: Since the raw value from the IMU are
A/D values, we need to convert A/D values to physical units.

value = (raw − bias) ∗ scale factor

where

scale factor = V ref/1023/sensitivity

sensitivity for gyro is 3.33mV/deg/s, and sensitivity for
accelerometer is 300mV/g Therefore, value for gyro and
accelerometer in physical units are:

Valuegyro =
(raw − bias)3300π

1023 · 3.33 · 180
(rad/s) (10)

Valueacc =
(raw − bias)3300

1023 · 300
(g) (11)

Where bias are the average of the first 200 terms in each IMU
data based on the fact that there is no rotation on the body in
the few seconds of each data, meaning that gyro’s value should
be 0 and the accelerometer should be [0, 0, 1]ingunits in the
first few seconds. Besides, there are some glitch in dataset4.
We can see from the top right in Fig.1, Gyro all 3 readings
stays at a fixed value and then come back to normal. I fixed
this by setting the first 600 values to be 0 and utilize (7) to
obtain normal values. For the accelerometer glitch, there is a
pulse in Az in the last few seconds. Thus, I use a clip function
to clip the Az value between 0.5 and 1.5.

Fig. 1. Top left and Top right are the accelerometer and gyro glitch
respectively, bottom are the calibrated data

D. Implementation Details

1) Orientation Tracking: For the implementation of orien-
tation tracking, since most of the quaternions operations library
in Python are not differentiable, I implement most of the
quaternion operation such as quaternion addition, exponential
map, logarithm map, etc. Furthermore, I use Jax library [4]
to implement gradient decent for the optimization part of
orientation tracking, hence the quaternion operation are also
in Jax format. For the initialization of (6), I use motion model



to initial and found the results of the optimized quternions are
outperform than initialization with unit quaternions.

2) Panorama: For the implementation of Panorama, I first
utilize OpenCV to write all of the images in a video to get a
good understanding of how the orientation should look like in
3D space. For the coordinates transformation, I use Astropy
library [3] to transform spherical coordinate to Cartesian co-
ordinate and apply rotation to coordinate (xRT ). Finally swap
3 channels intensity values of the large canvas at transformed
image indexes for all timestamps to get a panoramic image.

IV. RESULTS

A. Orientation Tracking

The iterations of optimization loop are simply determined
by observing the lowest loss from the optimal quaternion. Fig-
ure 2 shows how cost function converge for all dataset. We can
tell that since we are using fixed step size, the converge rate for
all dataset are quiet similar. An interesting observation is that
when I tried to choose unit quaternion as initial quaternion,
the lowest losses are much larger than using motion model to
initialized. I believed the reason is that unit quternions are
too far from the actual orientation, hence the optimization
algorithm will easily stuck at local minimum, while the initial
motion model are already very closed to the true orientation.
Figure 3 shows the optimal orientation compare with Vicon
ground truth orientation. Besides, I believed that quaternion is
a better way to represent orientation than Euler angles since
there is no singularity in quaternion.

Fig. 2. Left: Euler angles representation of orientation ; Right: quaternion
representation of orientation (Testing Dataset).

B. Panorama

In Figure 5, we can see that there are no big difference
between the Panorama using Vicon ground truth data and the
Panorama estimated quaternion. We can also imagine how the
camera rotate in the space from the Panorama. The color of
the Panoramas are not the same as the Panorama in the project
document since I convert the image from BGR to RGB which
is how the image should look like in real life.

Fig. 3. Left: Euler angles representation of orientation ; Right: quaternion
representation of orientation (Training Dataset).



Fig. 4. Left: Euler angles representation of orientation ; Right: quaternion
representation of orientation (Testing Dataset).

Fig. 5. Left: Panorama using Vicon Data ; Right: Panorama using optimized
quaternion (Testing Dataset).

Fig. 6. Left: Panorama using optimized quaternion (dataset10) ; Right:
Panorama using optimized quaternion (dataset11)

REFERENCES

[1] UCSD ECE276A slides on rotations https://natanaso.github.io/ece276a/
ref/ECE276A 3 Rotations.pdf

[2] UCSD ECE276A slides on Robot Motion and Observation
Modelshttps://natanaso.github.io/ece276a/ref/ECE276A 4
MotionAndObservationModels.pdf

[3] astropy library https://docs.astropy.org/en/stable/api/astropy.coordinates.
spherical to cartesian.html

[4] Jax library https://jax.readthedocs.io/en/latest/


