
Motion Planning
Chung-Pang, Wang

University of California San Diego
Department of Electrical and Computer Engineering

Abstract—In this work, we will focus on search-based and
sampling-based motion planning algorithms in 3-D Euclidean
space. We will test both search-based and sampling-based motion
planning algorithms in 7 different environments with obstacles
that are axis-aligned bounding boxes (AABBs).

Index Terms—search-based, sampling-based motion planning
algorithms

I. INTRODUCTION

Motion planning involves the task of finding a feasible path
for a robot or an autonomous agent from a starting point to
a destination while avoiding obstacles. This work focuses on
two primary categories of motion planning algorithms: search-
based and sampling-based methods in a 3-D Euclidean space.
Search-based algorithms rely on systematic exploration of the
state space to find an optimal path. In contrast, sampling-
based algorithms generate paths by randomly sampling the
state space and connecting these samples to construct a fea-
sible path. For search-based algorithms, we will implement
weighted A* path planning algorithm to find an optimal path.
For sampling-based algorithms, we will implement Rapidly-
exploring Random Trees (RRT) and it’s variations and finally
compare the optimally and efficiency between search-based
and sampling-based algorithm.

II. PROBLEM FORMULATION

A. Deterministic Shortest Path Problem

Consider a graph with vertex set V , edge set E ⊆ V × V ,
and edge weights C := {cij ∈ R ∪ {∞} | (i, j) ∈ E} where
cij denotes the cost of transition from vertex i to vertex j.
Our objective is to find a shortest path from a start node s
to an end node τ . Path can be defined as a sequence i1:q :=
(i1, i2, . . . , iq) of nodes ik ∈ V and the length of the path can
be written as the sum of edge weights along the path:

Ji1:q =

q−1∑
k=1

cik,ik+1
(1)

All paths are from s ∈ V to τ ∈ V: Ps,τ := {i1:q |
ik ∈ V, i1 = s, iq = τ}. The objective of the path planning
algorithm is to find a path that has the minimum length from
node s to node τ :

dist(s, τ) = min
i1:q∈Ps,τ

Ji1:q (2)

i∗1:q ∈ argmin
i1:q∈Ps,τ

Ji1:q (3)

Where i∗1:q is the optimal path from start to goal.

B. A* Path Planning Algorithm

A* path planning algorithm is a variation of label correcting
algorithm. Label correcting algorithm assigns the lowest cost
discovered so far from s to node i ∈ V label gi to the explored
nodes and correct the label when gi is reduced, the labels gj
of the children of i can be corrected with ḡj = gi + cij .
Furthermore, there is a OPEN list stores the set of nodes that
can potentially be part of the shortest path to τ .

Instead of using the condition gi+cij < gτ to correct label,
A* algorithm uses gi + cij + hj < gτ . where hj is a non-
negative lower bound on the optimal cost-to-go from node j
to τ known as a heuristic function:

0 ≤ hj ≤ dist(j, τ) (4)

The more stringent criterion for admission to OPEN can
reduce the number of iterations required by the label correcting
algorithm to find an optimal path. CLOSED stores the set of
states that have already been expanded. A* can be significantly
slow if the environment is complex. An easy solution is to
weight heuristic to increase the tendency of heading directly
to the goal, called weighted A* algorithm. We will discuss
that in the next section.

Algorithm 1 A* Algorithm
1: OPEN← {s},CLOSED← {}, ϵ ≥ 1
2: gs = 0, gi =∞ for all i ∈ V \ {s}
3: while τ /∈ CLOSED do
4: Remove i with smallest fi := gi + hi from OPEN
5: Insert i into CLOSED
6: for j ∈ Children(i) and j /∈ CLOSED do
7: if gj > (gi + cij) then
8: gj ← (gi + cij)
9: Parent(j)← i

10: if j ∈ OPEN then
11: Update priority of j
12: else
13: OPEN← OPEN ∪ {j}
14: end if
15: end if
16: end for
17: end while

C. Collision Checking Algorithm

Since there are obstacles in the environment the agent is
navigating, we need to check if the path will collide with
obstacles or not during the planning process. Luckily, the

obstacles are axis-aligned bounding boxes (AABBs), meaning
that we can utilize the geometry properties of AABBs to
simplify the general collision checking algorithm to improve
the efficiency of the path planning algorithm. The main idea of
our collision checking algorithm is that since the environment
is discretized due to the need of planning algorithm, we can
simplified the 3D collision checking of line segments (paths)
and AABBs to the 3D collision checking of sampled points
from the line segments and AABBs. Therefore, we only need
to check if the points are lie in the AABBs or not. We defined
3D point and AABBs collision detection function:

f(P,B) = (Px ≥ BminX ∧ Px ≤ BmaxX)

∧(Py ≥ BminY ∧ Py ≤ BmaxY)

∧(Pz ≥ BminZ ∧ Pz ≤ BmaxZ)

(5)

Where P are the sampled points and B are the Vertices of the
AABBs. Steer(vp, r) function leads the start points ps to the
next sample point pes.

Algorithm 2 Collision Checking Algorithm
1: ps ← start; pe ← end; r ← resolution
2: vp ← pe − ps
3: Pes ← Steer(vp, r)
4: for pes ∈ Pes do
5: if f(P,B) then
6: return TRUE
7: else
8: return FALSE
9: end if

10: end for

D. Rapidly-Exploring Random Trees (RRT)

In contrast to search-based path finding algorithms,
sampling-based algorithms generate paths by randomly sam-
pling the free state space Cfree and connecting these samples
to construct a feasible path. There are several primitive pro-
cedures for sampling-based motion planning.

• Sample: returns iid samples from C
• SampleFree: returns iid samples from Cfree
• Nearest: given a graph G = (V,E) with V ⊂ C and a

point x ∈ C, returns a vertex v ∈ V that is closest to x:

Nearest((V,E),x) := argmin
v∈V
∥x− v∥

• Near: given a graph G = (V,E) with V ⊂ C, a point
x ∈ C, and r > 0, returns the vertices in V that are
within a distance r from x:

Near((V,E),x, r) := {v ∈ V | ∥x− v∥ ≤ r}

• Steer: given points x,y ∈ C and ϵ > 0, returns a point
z ∈ C that minimizes ∥z− y∥ while remaining within ϵ
from x:

Steerϵ(x,y) := arg min
z:∥z−x∥≤ϵ

∥z− y∥

• CollisionFree: given points x,y ∈ C, returns True if
the line segment between x and y lies in Cfree and False
otherwise.

RRT first sample a new configuration xrand ∈ Cfree , find the
nearest neighbor xnearest in G and connect them if straight
line is collision-free, finally stop building the tree when the
goal configuration xτ . Although RRT is a fast way to obtain
a feasible path with little memory and computation compare
to A* algorithm, RRT is proven to be not optimal [5] since
we never modify the tree once we build it. Therefore, we
will implement an optimal version of RRT called RRT* which
rewires the tree to ensure asymptotic optimality in the next
section.

Algorithm 3 RRT
1: V ← {xs};E ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((V,E), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if CollisionFree(xnearest, xnew) then
7: V ← V ∪ {xnew};E ← E ∪ {(xnearest, xnew)}
8: end if
9: end for

10: return G = (V,E)

III. METHODS

A. Weighted A*

An simple improvement of A* path planning algorithm
is to weight the heuristic function, forcing the agent to
expand toward the goal extensively. The only variation is to
change line 4 of the original A* algorithm fi := gi + hi to
fi := gi + ϵhi. Since the importance of the heuristic function
had increased, the nodes that has the smallest fi will more
likely be the nodes toward the goal. With weighted heuristic,
the agent might find the optimal path in a shorter amount of
time. However, if there is a trap (e.g. curved wall) between the
start and the goal, the agent might get stuck in that region for
a while. Besides, choosing large ϵ might cause the heuristic
function to be not admissible and consistent, meaning that it is
no longer guarantee to find an optimal path or even a feasible
path.

B. RRT*

As mentioned above, RRT is not optimal since we never
modify the tree once we build it. Therefore, a variation RRT*
introduces rewiring mechanism to retain optimality of RRT.
Similarly, RRT* first generates a new potential node xnew but
instead of finding the closest node in the tree, find all nodes
within a neighborhood N of radius min{r∗, ϵ} where:

r∗ > 2

(
1 +

1

d

)1/d (Vol(Cfree)

Vol(Unit d-ball)

)1/d (
log |V |
|V |

)1/d

(6)

r∗ is the suggested connection radius of RRT* [6] to
build a better tree. Let xnearest = argminxnear∈N g(xnear) +
c(xnear, xnew) be the node in N on the currently known
shortest path from xs to xnew. Set the label of xnew to
g(xnew) = g(xnearest) + c(xnearest, xnew). Check all nodes
xnear ∈ N to see if re-routing through xnew reduces the path
length. If g(xnew) + c(xnew, xnear) < g(xnear), then remove the
edge between xnear and its parent and add a new edge between
xnear and xnew.

Algorithm 4 RRT*
1: V ← {xs};E ← ∅
2: for i = 1 . . . n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((V,E), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if CollisionFree(xnearest, xnew) then
7: Xnear ← Near((V,E), xnew,min{r∗, ϵ})
8: V ← V ∪ {xnew}
9: cmin ← Cost(xnearest) + Cost(Line(xnearest, xnew))

10: for xnear ∈ Xnear do
11: if CollisionFree(xnear, xnew) then
12: if Cost(xnear) + Cost(Line(xnear, xnew)) < cmin then
13: xmin ← xnear
14: cmin ← Cost(xnear) + Cost(Line(xnear, xnew))
15: end if
16: end if
17: end for
18: E ← E ∪ {(xmin, xnew)}
19: for xnear ∈ Xnear do
20: if CollisionFree(xnew, xnear) then
21: if Cost(xnew) +Cost(Line(xnew, xnear)) < Cost(xnear) then
22: xparent ← Parent(xnear)
23: E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)}
24: end if
25: end if
26: end for
27: end if
28: end for
29: return G = (V,E)

C. Bi-Directional RRT
While RRT* improves upon the original RRT by providing

optimality, there are still potential issues that may arise. If the
searching environment is easy to pass through in one direction
but very difficult from the other direction, start building the
tree from the wrong way might take a huge amount of time
to find a feasible path. The problem is called the bug traps
problem as shown in Fig.1. A simple and intuitive way to
solve it is to build the tree from both start and goal. As shown
in Algorithm.5, Bi-Directional RRT build trees from both sides
and swap the building priority if the trees from the other side
grows faster.

Fig. 1. Bug Trap

Algorithm 5 Bi-Directional RRT
1: Va ← {xs};Ea ← ∅;Vb ← {xr};Eb ← ∅
2: for i = 1 to n do
3: xrand ← SampleFree()
4: xnearest ← Nearest((Va, Ea), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if xnew ̸= xnearest then
7: Va ← Va ∪ {xnew};Ea ← Ea ∪ {(xnearest, xnew), (xnew, xnearest)}
8: x′

nearest ← Nearest((Vb, Eb), xnew)
9: x′

new ← Steer(x′
nearest, xnew)

10: if x′
new ̸= x′

nearest then
11: Vb ← Vb ∪ {x′

new};Eb ← Eb ∪ {(x′
nearest, x

′
new), (x

′
new, x

′
nearest)}

12: if x′
new = xnew then

13: return SOLUTION
14: end if
15: if |Vb| < |Va| then
16: SWAP((Va, Ea), (Vb, Eb))
17: end if
18: end if
19: end if
20: end for
21: return FAILURE

IV. IMPLEMENTATION DETAILS

A. Discrete Map and Collision Checking

To run our path planning algorithm in 3D continuous
Euclidean space, we need to discretize the map to 3D grids. I
had tried different map resolution (from 0.1 to 0.5) and found
0.3 to be the balance of runtime and optimality (smallest path
length). For the motion model, I’m using 26 directions at
each step with a equal cost 0.5, meaning the agent will try
26 different directions in a 3D sphere with radius 0.5. For
collision checking, I use R-tree for spatial indexing AABBs
to check if a given point is in the AABBs or not. I can build
R-tree before planning started and access efficiently during
planning, saving large amounts of time.

B. Search-Based A* and weighted A* Algorithm

For the implementation of A* algorithm, I strictly follow
Algorithm.1 and use Euclidean distance hi := ∥xτ − xi∥2
as my heuristic function. I utilize priority queue (pqdict in
Python) for OPEN list to speed up the process of finding the
smallest f value. Furthermore, I test relative large weight ϵ =
1.5 to see how will the OPEN and CLOSE differ from the
original A* algorithm.

C. Sampling-Based RRT* Algorithm

For the implementation of sampling-based methods, I uti-
lized Python motion planning library at https://github.com/
motion-planning/rrt-algorithms and deploy on our 3D Eu-
clidean space. I test RRT, RRT* and Bi-Directional RRT* and
visualize the difference of the trees.

V. RESULTS

A. A* and Weighted A* Planning Algorithm

Table.1 shows the runtime (in seconds), path length/cost
(in meters) and the number of OPEN and CLOSED nodes
at terminal state of A* path planning algorithm in different
environments. We can see from Fig.3, maze environment is the

most complex, as a result, the expanded states are extremely
larger the opened node, meaning the algorithm explored many
nodes and find the smallest f value throughout many nodes at
each iterations, causing long time to terminate but guarantee
optimality. Fig.3 are visualization of the non-weighted A*
algorithm in 7 different environments, the yellow points are the
CLOSED nodes and the grey points are the OPEN nodes in the
end. As mention in previous section, weighting heuristic func-
tion of A* algorithm improve the efficiency of A* algorithm.
Fig.2 shows the comparison of the visualization of weighted
A* (ϵ = 1.5) and original A* algorithm. We can see from
the bottom left and right in Fig.2 that the numbers OPEN and
CLOSED are significantly decreased and aggregated along the
path since weighted heuristic increase the tendency of moving
toward to the goal. For the Flappy Bird environment weighted
A* only takes 25 seconds to find an optimal path and the
Window case only takes 1.06 seconds which is 2 4 times faster
than A* algorithm.

Fig. 2. A* (Top Left and Right) and Weighted A* (Bottom Left and Right)
in different test scenario

Test Scenario Time Taken Path Length OPEN CLOSE
Single Cube 0.5 8.47 353 18
Maze 205.48 75.04 4277 57590
Flappy Bird 47.67 26.25 821 14577
Monza 41.44 76.38 1683 13942
Window 51.04 26.59 5882 14135
Tower 39.29 29.07 1079 11621
Room 4.80 11.55 1162 1288

TABLE I
SUMMARY OF A* PATH PLANNING EXPERIMENTS

Fig. 3. A* path planning algorithm in different test scenario

B. RRT-Based Planning Algorithm

As mentioned in the previous section, RRT is not optimal
since we never modify the tree once we build it. We can
see from Fig.4, the paths RRT find are not optimal and take
longer path to reach the goal while RRT* rewire a better
path when building trees thus the trees appear to be more
like straight lines, improves optimality greatly. As the bug
trap problem mentioned above, I test Bi-Directional RRT*
for 7 different environments. Bi-Directional RRT* not only
build trees from both start and goal sides but also rewires
trees when building them. We can see from table.2, most of
the test scenario are faster than A* search-based algorithm
except for the Maze and Tower environment. We can see
from Fig.5 that those two environment are more complex
and this is when search-based algorithm might out-win the
sampling-based algorithm in runtime because the sampling-
based algorithm might sample lots of useless tree and get stuck
at several free space. But for the other test case, Bi-Directional
RRT* is extremely efficient for finding a feasible path with a
negligible loss of optimality in path length.

Fig. 4. RRT in Window and Maze Environments(Top Left, Top Right); RRT*
in Window and Maze Environments(Bottom Left, Bottom Right)

Test Scenario Time Taken Path Length Samples
Single Cube 0.23 7.92 70
Maze 241.9 93 11047
Flappy Bird 22.16 28.75 614
Monza 35.03 78.99 1148
Window 0.989 24.51 72
Tower 43.77 32.07 1050
Room 0.82 11.55 93

TABLE II
SUMMARY OF BI-DIRECTIONAL RRT* PATH PLANNING EXPERIMENTS Fig. 5. Bi-Directional RRT* path planning algorithm in different test scenario

REFERENCES

[1] UCSD ECE276B slides on Markov Chains https://natanaso.github.io/
ece276b/ref/ECE276B 2 MC.pdf

[2] UCSD ECE276B slides on Markov Decision Processeshttps://natanaso.
github.io/ece276b/ref/ECE276B 3 MDP.pdf

[3] UCSD ECE276B slides on Deterministic Shortest Pathhttps://natanaso.
github.io/ece276b/ref/ECE276B 5 DSP.pdf

[4] Article of different 3D collision detection methods Pathhttps://developer.
mozilla.org/en-US/docs/Games/Techniques/3D collision detection

[5] Karaman, S., & Frazzoli, E. (2011). Sampling-based Algorithms for Op-
timal Motion Planning. *The International Journal of Robotics Research,
30*(7), 846-894. https://doi.org/10.1177/0278364911406761

[6] Bhattacharya, A., Agarwal, S., & Karaman, S. (2018). Revisiting the
Asymptotic Optimality of RRT*. arXiv preprint arXiv:1802.06305.

[7] UCSD ECE276B slieds on Sampling-Based Motion Planning https:
//natanaso.github.io/ece276b/ref/ECE276B 9 SamplingBasedPlanning.
pdf

