
Dynamic Programming
Chung-Pang, Wang

University of California San Diego
Department of Electrical and Computer Engineering

Abstract—This project focuses on autonomous navigation in a
Door & Key environment. The objective is to get our agent to the
goal location. The environment may contain a door which blocks
the way to the goal. If the door is closed, the agent needs to
pick up a key to unlock the door. We will formulate Door & Key
problem as a Deterministic Shortest Path problem and implement
a Dynamic Programming algorithm to find the optimal path by
minimizing the cost of reaching the goal.

Index Terms—Dynamic Programming, Door & Key problem

I. INTRODUCTION

The Door & Key problem involves an agent navigating
through an grid environment with the goal of reaching a spe-
cific destination from specific starting position and orientation
with minimal cost. Furthermore, the Door & Key problem
requires the agent to interact with door and a key, adding layers
of complexity and decision-making. To obtain the optimal path
from the starting state to the goal, we need to compute a
optimal policy that maps states to controls that cost agent the
least to reach the goal. We can formulate the Door & Key
problem as a Markov Decision Process (MDP) and obtain
optimal policy by utilizing Dynamic Programming to solve
the MDP. In the first part of the project, we will perform
Dynamic Programming algorithm 7 times for 7 different
known environments that the position of key, door and goal
are known. We will have 7 different optimal policy for 7
different environments. In the second part of the project, we
will perform a single Dynamic Programming algorithm for 36
random environments that have several possible key, door and
goal position, etc. By expanding the state space, the algorithm
can encompass all possible variations or configurations within
the environments, ensuring that it captures every potential
scenario or possibility.

II. PROBLEM FORMULATION

A. Markov Decision Process for Door & Key problem

To formulate the Markov Decision Process for the Door
& Key problem we first need to define discrete state space
X , discrete control space U , prior p0(·), pf (·, xt, ut) con-
ditional pdf defined on X for given x ∈ X and u ∈ U ,
finite time horizon T , ℓ(x,u) stage cost of applying control
u ∈ U in state x ∈ X , q(x) terminal cost of being in state
x at time T and discount factor γ ∈ [0, 1]. Since the states and
the state transitions are fully deterministic, we will not need
prior and conditional pdf in the algorithm. Besides, we will set
discount factor to be 1 to simplify the algorithm. In the first
part of the project, Door & Key problem consist of position of
the agent, orientation of the agent, door status (open or closed)

and key status (picked or not). There are 5 control actions u
Move Forward (MF), Turn Left (TL), Turn Right (TR), Pickup
the key (PK) and Unlock the door (UD).

x = (xt, yt, Orientation, Door, Key)

u = {MF, TL, TR, PK, UD}
(1)

where Door ∈ {0, 1}, Key ∈ {0, 1} and Orientation ∈
{Left,Right, Up,Down}. Stage cost, the cost of each action
is one and set to 0 if the state reaches the goal. Terminal cost,
the cost to terminate at state x is designated as infinite across
all states with the exception of the goal state, at which point
it is nullified.

ℓ(x, u) =

{
0 if x = τ
1 otherwise

q(x) =

{
0 if x = τ

∞ otherwise

(2)

B. Solving MDP with Dynamic Programming

Now we have the model of the MDP for Door & Key
problem. To obtain the optimal path of MDP, we will define a
control policy function πt(x), a function from state x at time
t to control u and a Value function V π

t (x), an expected long-
term cost starting in state x at time t and following policy π.
With these two function, we can now optimize the functions
over controls u to obtain optimal value function V ∗

t (x) and
optimal control policy π∗

t (x). The minimization formulation
to find minimizer of the value function and it’s corresponding
optimal policy is similar to optimal control problem. Optimal
control problem can be written as:

V ∗
0 (x0) = min

π
V π
0 (x0)

π∗ ∈ argmin
π

V π
0 (x0)

(3)

We can solve the MDP problem by reformulating it as an
optimal control problem and solve it with Dynamic Program-
ming algorithm (DP). Dynamic Programming is an algorithm
for computing the optimal value function V ∗

0 (x0) and an op-
timal policy π∗ backwards in time. In most cases, DP is much
more efficient than a brute-force approach evaluating all possi-
ble policies. For this Door & Key problem specifically, we do
not need probability term since the problem is deterministic,
we will ignore the terms related to probabilities computation.
Dynamic Programming algorithm states as Algorithm 1.

Algorithm 1 Dynamic Programming for MDP
1: Input: MDP (X,U, T, ℓ, q)
2: Initialize VT (x) = q(x),∀x ∈ X
3: for t = T − 1, ..., 0 do
4: for all x ∈ X , u ∈ U(x) do
5: Qt(x, u) = ℓ(x, u) + Vt+1(x

′)
6: end for
7: Vt(x) = minu∈U(x) Qt(x, u),∀x ∈ X
8: πt(x) = argminu∈U(x) Qt(x, u),∀x ∈ X
9: end for

10: return policy π0:T−1 and value function V0

x′ is the next state given current state x and control u. x′

can be computed by motion model f(x,u).

III. METHODS

A. Deterministic Shortest Path via Dynamic Programming

Solving the Door & Key problem involves dealing with
start and goal states. However, in the original formulation
of Dynamic Programming, there was no goal and start node.
Therefore, we can reformulate DP with the format of consid-
ering start and goal states to solve the problem more easily.
The Door & Key problem is a type of deterministic shortest
path problem since we are finding the shortest path from the
starting states to the goal states and the states transitions are
deterministic. In fact, The finite-state deterministic shortest
path problem is equivalent to a finite-horizon finite-state de-
terministic optimal control (DOC) problem which is what we
formulated earlier. Thus, we proposed a deterministic shortest
path version of dynamic programming (as shown in Alg.2)to
solve the Door & Key problem.

Algorithm 2 DSP via Dynamic Programming
1: Input: vertices V , start s ∈ V , goal τ ∈ V , and costs cij

for i, j ∈ V
2: T = |V | − 1
3: VT (τ) = VT−1(τ) = · · · = V0(τ) = 0
4: VT (i) = ∞,∀i ∈ V \ {τ}
5: VT−1(i) = ciτ ,∀i ∈ V \ {τ}
6: πT−1(i) = τ,∀i ∈ V \ {τ}
7: for t = T − 2, ..., 0 do
8: Qt(i, j) = cij + Vt+1(j), ∀i ∈ V \ {τ}, j ∈ V
9: Vt(i) = minj∈V Qt(i, j), ∀i ∈ V \ {τ}

10: πt(i) = argminj∈V Qt(i, j), ∀i ∈ V \ {τ}
11: if Vt(i) = Vt+1(i),∀i ∈ V \ {τ} then
12: break
13: end if
14: end for

The time horizon for the DP is the number of all possible
states minus 1. Vt(i) is the optimal cost-to-go from node i
to node τ in at most T − t steps and the algorithm can be
terminated early if Vt(i) = Vt+1(i), ∀i ∈ V \ {τ}.

B. Dynamic Programming for Known Environments

As mentioned in (1), the states x ∈ RN×N×4×2×2 for
known Environments including the position and orientation
of the agent, key status and door status as shown in Fig.1 .
There are 5 possible actions that can be executed in each step
and each actions cost equally. For known environments, start
position, orientation and goal position are known. Since we
will not know the orientation of the agent when it reach the
goal, the orientation of the goal is not specified beforehand.
Initially, we set the value at the goal state at each time step in
the value function to be 0 and everywhere else to be infinity.
In each time step, we first compute the sum of the cost of the
current action and evaluate the value function in previous time
step at the new state given by the motion model. The motion
model for Known Environments:

f(x,u) =

Move Forward if u = MF

Turn Left if u = TF
Turn Right if u = TR
Key = 1 if u = PK
Door = 1 if u = UD

(4)

Besides, we need to set some constraints to eliminate invalid
actions or states. If there is an obstacle in front of the agent,
then the agent can not move forward. If there are no door or
key in front of the agent, then the agent will cost 1 for doing
nothing and if the agent don’t have a key, even if there is a
door in front the agent still cannot unlock the door.

Fig. 1. Known Environment

C. Dynamic Programming for Random Environments

Unlike known environments, in random environments, there
are 3 possible key positions

{
(1, 1), (2, 3), (1, 6)

}
, 3 possible

goal positions
{
(5, 1), (6, 3), (5, 6)

}
and 2 doors at (4, 2)

and (4, 5) with 4 possible door status. Random environments
are all 8 × 8 grids, the states space become extremely large
compare to the previous known environments. Therefore, we
need to alter the states defined in (1). The states for random
environments:

x = (xt, yt, Orientation, Goal, Door Status,

Key Position, Key Status)
(5)

where

Door Status =

Door1 Locked Door2 Locked,

Door1 Unlocked Door2 Unlocked,
Door1 Locked Door2 Unlocked,
Door1 Unlocked Door2 Locked

Key Status =

{
Key Picked Up,

Key Not Picked Up

}
Since the states have changed, motion model will also change.
The structure of the motion model is still the same as (4), we
only need to change the conditions for PK and UD to adapt
to different possible key, door positions and status.

Fig. 2. Known Environment

IV. IMPLEMENTATION DETAILS

A. Known Environments

For known environments, there are height×width×4×2×2
states, take 5× 5 grids environment as example, there are 400
possible states. The states are defined as an height×width×
4× 2× 2 array:

States : (x, y, Headings Id (0, .., 4), door status (0 or 1),

key status (0 or 1))

I designed the dimensions of both the value function array
and the optimal policy array to match the dimensions of the
states array. This alignment allows for straightforward and
efficient access to values corresponding to each state. Then, I
strictly follow Algorithm 2 to iterate through all of the possible
position, orientations, door status, key status and actions to first
compute the Q value and only append the action and value if
the Q value is less than the value function evaluate at the new
state. Finally, we have the optimal policy that tells the agent
which action will cost the least to get to the goal at given
states. Indexing optimal policy array from the starting states
will lead us to the goal with minimum cost.

B. Random Environments

For Random environments, there are 8×8×4×3×4×3×2
states as shown in (5), thus, there are 18432 possible states.
The states are defined as an 8× 8× 4× 3× 4× 3× 2 array:

States = (x, y, Headings ID (0, .., 4),

Goal Positions ID (0, 1, 2) Door Status (0 or 1),

Key Positions Id (0, 1, 2), Key Status (0 or 1))

TABLE I
OPTIMAL POLICY FOR KNOWN ENVIRONMENTS

Optimal Actions 1 2 3 4 5 6 7 8 9 Total Costs
5x5-normal TL TL PK TR UD MF MF TR MF 9
6x6-direct MF MF TR MF MF – – – – 5
6x6-normal TL MF PK TL MF TL MF TR – 8
6x6-shortcut PK TL TL UD MF MF – – – 6
8x8-shortcut TR MF TR PK TL UD MD MF – 8
8x8-direct MF TL MF MF MF TL MF – – 7
8x8-normal TR MF TL MF TR MF MF MF PK –
8x8-normal-continued TL TL MF MF MF TR UD MF MF –
8x8-normal-continued MF TR MF MF MF – – – – 23

The dimensions of both the value function array and the
optimal policy array to match the dimensions of the states
array. I also strictly follow Algorithm 2 to iterate through all
possible states and actions. Even though the states space is
larger, due to the early termination condition implemented in
line 12 of Algorithm 2, the path finding program concludes
significantly prior to reaching the terminal horizon at

∣∣V ∣∣−1.

V. RESULTS

A. Known Environments

Since the environments are known, we are executing path
finding algorithm 7 times, obtaining 7 optimal policies for
7 different environments as shown in table 1. Even though
the time horizon are few hundred iterations, my path finding
algorithm terminated within 20 iterations due to value function
termination condition. As shown in Fig. 3. to Fig. 9., the
algorithm successfully generate optimal policies that lead the
agent to reach the goal with minimum cost.

Fig. 3. doorkey-5x5-normal

Fig. 4. doorkey-6x6-shortcut

Fig. 5. doorkey-6x6-direct

Fig. 6. doorkey-6x6-normal

Fig. 7. doorkey-8x8-shortcut

Fig. 8. doorkey-8x8-direct

Fig. 9. doorkey-8x8-normal

B. Random Environments

For the random environments case, we can only use a single
policy for all 36 random environments. By specifying each
possibility into our state space and iterate through all of the
possible states in the dynamic programming algorithm, the
optimal policy will automatically capture all possible goal,
key positions and door status as shown in Fig. 10 to Fig. 13.
The time horizon for random environments is 18431 which
is significantly larger than known environments case due to
uncertainty. However, my algorithm find the optimal path
with 23 iterations and terminated within 10 seconds, showing
the power of dynamic programming solving such complex
decision-making problem.

Fig. 10. Random DoorKey-8x8-1

Fig. 11. Random DoorKey-8x8-1

Fig. 12. Random DoorKey-8x8-1

Fig. 13. Random DoorKey-8x8-1

REFERENCES

[1] UCSD ECE276B slides on Markov Chains https://natanaso.github.io/
ece276b/ref/ECE276B 2 MC.pdf

[2] UCSD ECE276B slides on Markov Decision Processeshttps://natanaso.
github.io/ece276b/ref/ECE276B 3 MDP.pdf

[3] UCSD ECE276B slides on Deterministic Shortest Pathhttps://natanaso.
github.io/ece276b/ref/ECE276B 5 DSP.pdf

